Transcriptome Analysis of Pseudomonas aeruginosa Response to Hydrogen Peroxide

Wook Chang¹, David Small¹, Freshteh Toghrol², and William E. Bentley¹

Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, MD 20742¹ and Microarray Research Laboratory, Office of Pesticide Programs, U. S. Environmental Protection Agency, Fort Meade, MD 20755²

INTRODUCTION

- Why Pseudomonas aeruginosa?
- An opportunistic Gram-negative pathogen //
- Causes urinary tract infections and respiratory system infections, particularly in patients with burns, cancer, and cystic fibrosis
- Why oxidative stress by reactive oxygen species?
- Hydrogen peroxide (H₂O₂), superoxide (O₂.-), and the hydroxyl radical (OH.) produced by phagocytes during active infection
- Damages cellular materials (DNA, lipids, and proteins)
- P. aeruginosa has complex antioxidant strategies that serve to neutralize and repair oxidative damage
- Why microarray technology (GeneChip®)?
- Enables a genome-wide analysis of the cellular responses to oxidative stress

How antioxidant genes are related and regulated?

- Reinforce known relationships between genes with previously identified functions
- Reveal new target genes that provide more insight into P. aeruginosa-host interactions

MATERIALS AND METHODS

- 1mM Hydrogen peroxide and 20 min exposure
- Affymetrix P. aeruginosa GeneChip® arrays
- 5 and 4 biological replicates for experimentals (w/ hydrogen peroxide) and controls (w/o hydrogen peroxide), respectively
- Quantitative real-time PCR used for the validation of the microarray data

RESULTS AND DISCUSSION

Statistical analysis of microarray data

- *p*-value for the Mann-Whitney test ≤ 0.05
- Fold change in transcript level ≥ 2.0
- Presence or marginal calls ≥ 50% replicates on both the experimental and control sets

 \Rightarrow 115 and 103 out of 5,570 genes had statistically significant increases and decreases in transcript levels.

Functional Classification

 Slowdown of active and/or facilitated transport transport of small molecules, secreted factors, and membrane proteins

• Repression of primary metabolism functions - cell division inhibitor genes (PA0671 and PA3008) induced

Cellular protective mechanisms

• Catalase (katA and katB) induced

 DNA repair-related genes highly induced – PA3007(lexA), PA3617(recA), PA3008, PA0669, PA3413-3414, and PA4763 (recN)

 \Rightarrow DNA repair proteins and catalases among the most central antioxidant mechanisms of P. aeruginosa

Iron regulation-related genes

- Iron metabolism is coordinately regulated with oxidative stress
- Upregulation of iron starvation-inducible genes reported by Palma et al. (J Bacteriol, 2004)

• However, in this study, genes regulated by Fur (ferric uptake repressor) were repressed (e.g. iron starvation sigma factor, siderophore receptors, siderophore biosynthesis genes)

 \Rightarrow Intracellular iron level affected by oxidative stress (e.g. superoxide releases iron from iron-sulfur proteins)

Pyocin synthesis-related genes

- All types (F-, R-, and S-) of pyocin (bacteriocin) genes induced - New finding!
- Bacteria adapt bacteriocins for the invasion of an ecological population; However, pyocin also toxic to human cancer cells - Cystic fibrosis patients?
- Immunity enzyme repressed Self-killing activity?
- \Rightarrow Pyocin transcription by oxidative stress New P. aeruginosa-host interaction

CONCLUSIONS

- Primary metabolism and membrane transport repressed; DNA repair proteins and catalases induced
- Iron regulation affected by oxidative stress
- Pyocin transcription detected Another potential defensive mechanism against host cells

This research is conducted in collaboration with U.S. EPA (Grant identification number: T-83100801-0)